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Cahn�Hoffman !-Vector and Its Relation to Diffuse
Interface Models of Phase Transitions
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In this paper we review two important theoretical areas to which J. W. Cahn
has made major contributions: (i) The theory of the !-vector developed by
Hoffman and Cahn, which provides an elegant setting for the description of the
equilibrium shapes of sharp interfaces in the presence of anisotropic surface
energy. (ii) Diffuse interface theories of phase transitions. We describe recent
work which connects these two complementary facets of models of interfaces by
the development of a generalized !-vector for diffuse interface models with
anisotropic surface energy. We show that the generalized !-vector plays a cen-
tral role in both the mathematical and physical aspects of a wide range of diffuse
interface theories of interfaces with either anisotropic surface energy or attach-
ment kinetics.

KEY WORDS: Anisotropy; surface energy; diffuse interface model; phase-
field model; stress tensor; equilibrium shapes.

1. INTRODUCTION

In this paper we review recent developments that combine two of areas of
research to which J. W. Cahn has made important contributions; diffuse
interface theory of interfaces and the !-vector for the description of interfa-
cial surfaces with anisotropic surface energy. We show how a connection
can be made between anisotropic diffuse interface models of interfaces and
the !-vector formalism by a natural generalization of the !-vector originally
conceived by Hoffman and Cahn(1, 2) for sharp interfaces. We show that the
generalized !-vector plays a central role in the theory of anisotropic diffuse
interface models from describing the equilibrium interface shape, to
representing the entropy flux of a moving interface, as well as describing
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the notion of stress in the interface through its role in contributing to the
reversible part of the stress tensor.

Up until the end of the nineteenth century interfaces were mainly
considered to be surfaces in what is often termed a ``sharp interface'' or
``free-boundary problem'' description. In this formulation an interface is
attributed physical properties different from the bulk phases that it
separates, e.g., surface energy, #, is given as an energy excess per unit area.
It was in this setting that interfaces with anisotropic surface energy were
discussed and, in particular, their equilibrium shapes studied.

The equilibrium shape of an isothermal interface of a pure material
may be found by minimising the total energy of the system which is com-
prised of the energy of the interface due to its surface energy plus the
energy of each of the bulk phases, subject to the constraint that the volume
enclosed by the interface is constant. A simple calculation gives that

#K=&2f (1)

Here K is the mean curvature of the interface and 2f is the free energy
difference (per unit volume) between the two interfaces given by
L(T&TM)�TM , where T is the temperature of the system, TM the melting
temperature of a planar interface, and L the latent heat per unit volume.
Equation (1) may be expressed as

T=TM&#
TM

L
K (2)

the so-called Gibbs�Thomson equation. It is satisfied in two dimensions by
a circular interface shape.

When the surface energy is anisotropic the same procedure in two
dimensions gives that

T=TM&[#(%)+#"(%)]
TM

L
K (3)

where % is the angle subtended by the normal to the interface with a fixed
direction.

In three dimensions this procedure results in a much more complicated
formula, and is best described compactly by adopting the Hoffman�Cahn
!-vector as we describe in the next section.

The description of equilibrium shapes of interfaces with anisotropic
surface energy dates back to the Gibbs�Wulff construction(3, 4) which
describes a geometric procedure to determine the equilibrium shape based
upon the #-plot; a polar plot in which r##(e� r), where e� r is the unit radial
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vector. A review of this classical area of theory is given by Frank(5) and
Mullins.(6) The Cahn�Hoffman !-vector theory developed in the 1970's
encompasses these ideas and places them in an elegant and relatively
simple framework.

In contrast to sharp interface models, diffuse interface theories
recognise that in reality the interfaces have a small, but finite, thickness in
which physical quantities vary between their values in the bulk phases.
Quantities in the sharp interface formulation which are viewed as localised
in the interfacial surface are, in the diffuse interface treatment, identified as
being distributed throughout the interfacial region. For example, the sur-
face energy of the interface is derived from the raised Helmholtz free energy
density associated within the interfacial region.

Diffuse interface models are based on a thermodynamics involving
gradients of the thermodynamic variables to account for nonlocal effects.
Originally they were developed to investigate liquids near their critical point
and have subsequently been refined and developed to account for a wide
range of physical situations such as liquid crystals, (7) spinodal decomposi-
tion(8, 9) and ordering transitions in alloys.(10�12) Rowlinson and Widom (13)

give a detailed account of their historic development.
In this paper we briefly review both the Cahn�Hoffman !-vector and

diffuse interface theories of interfaces. In particular, we discuss recent
developments which allow diffuse interface models to describe interfaces
with anisotropic surface energy. Subsequently, we show how these two
complementary approaches may be unified by a generalised Cahn�Hoffman
!-vector. We go on to describe its use in a range of different diffuse interface
models associated with both solid�liquid and solid�solid phase transitions.
We illustrate its utility in the context of anisotropic phase-field models of
solid�liquid interfaces where it may be used in their sharp interface
asymptotic analysis, determination of the type of their partial differential
equations, as well as contributing to both the entropy flux and reversible
part of the stress tensor that emerges in the derivation of the phase-field
model in the setting of irreversible thermodynamics. Finally, we illustrate
the use of the !-vector in the analysis of anisotropic wavefronts of which
kinetically driven crystal growth is a particular example.

2. CAHN�HOFFMAN !-VECTOR

Hoffman and Cahn(1, 2) developed the !-vector to describe surface
energy anisotropy in a first order phase transition represented by a sharp
interface. The orientation of a surface element may be characterized in
terms of its local normal unit vector, n� , or equivalently by the spherical
coordinates % and , that define the radial unit vector e� r=n� . If the surface
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energy is then written in the form #=#(%, ,), Hoffman and Cahn defined
the !-vector by

!9 ={[r#(%, ,)]=#e� r+#%e� %+
1

sin %
#,e� , (4)

where e� % and e� , are unit vectors tangent to the interface in the direction of
% and , increasing, respectively. In the isotropic case (constant #), the
!-vector reduces to the form !9 =#n� . From the above definition it follows
that !-vector is in the direction of the normal to the 1�#-plot defined by
r=1�#(%, ,) and that

!9 } n� =#(n� ) (5)

which provides a geometric interpretation of the !-vector in relation to the
geometry of the 1�# surface which we illustrate in Fig. 1 for the two dimen-
sional case.

Hoffman and Cahn showed that the interface satisfies the condition

{S } !9 =&2f (6)

where {S } is the surface divergence on the interfacial surface, S, and 2f is
the bulk free-energy difference across the interface. The corresponding

Fig. 1. A schematic diagram of the relation of the !-vector to the 1�#-plot in two dimensions.
The solid curve shows the 1�#-plot for a surface energy with two-fold anisotropy. The !-vector
is normal to the 1�#-plot. It follows from Eq. (5) that the projection of !-vector onto the nor-
mal n� of the 1�#-plot is #(%).
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Gibbs�Thomson equation for an anisotropic surface energy may be written
in the form

T=TM&
TM

L
{S } !9 (7)

where T is the local interface temperature, TM is the melting point, and L
is the latent heat of fusion per unit volume. They went on to show that the
equilibrium shapes are given by x� =&2!9 �2f, i.e., the envelope of the !-vec-
tors, and that this is equivalent to the Gibbs�Wulff construction. If the
surface energy anisotropy is so pronounced that the 1�#-plot is not convex,
they showed that corners form in the equilibrium shape, and in two space
dimensions they demonstrated that the !-vector is continuous across cor-
ners. In fact in this situation the !-vector plot develops ``ears'' and the equi-
librium shape is formed from its interior envelope, see Fig. 2. The intimate
relation between the 1�#-plot and the equilibrium shape (revealed here by
the !9 -vector) is discussed by Frank(5) who shows that they are dual to one
another.

Cahn and Hoffman also showed that the force, df9 , acting on a line
element dl9 in the interface is given by

df9 =!9 _dl9 (8)

Fig. 2. The solid curve is the !-vector plot and the dashed curve is the 1�#-plot for
#(%) B 1+0.2 cos 4%. For this case the 1�#-plot is not convex and the !-vector plot forms
``ears.'' The equilibrium shape is given by the interior envelope of the !-vector plot; in this case
it exhibits four corners.
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Consequently the continuity of the !-vector at a two-dimensional corner
represents a force balance. In the case of a multijunction where n interfaces
intersect along a curve, C, they showed that the force balance is given by

:
k=n

k=1

!9 k_l9 =0 (9)

where !9 k is the k th interface at the multijunction and l9 is the unit tangent
vector to C. For the case of isotropic surface energies this reduces to
Young's Law.

More recently Taylor(14) stated an equivalent definition of the !-vector
by employing a homogeneous extension of degree one of #(n� ), where n�
denotes a unit normal, to arbitrary non-zero vectors p� by

#( p� )=| p� | #( p� �| p� | ) (10)

She showed that the cartesian components of !-vector may be defined by

! j=
�#( p� )
�pj

(11)

It follows from this definition that the !-vector is a homogeneous function
of degree zero, and that

#( p� )= p� } !9 ( p� ), d#=!9 } dp� , p� } d!9 =0 (12)

which are properties of the !-vector noted by Hoffman and Cahn, for the
case when p� represents the unit normal to the interface.

3. DIFFUSE INTERFACE MODELS

3.1. Isotropic

Diffuse interface models of phase transitions date from Rayleigh(15)

and van der Waals(16) who developed such a model for a fluid near its critical
point; a situation in which the interface thickness increases as the critical
temperature is approached. Subsequently, related theories based on square
gradient energy functionals, so-called Landau�Ginzburg theories, have
been applied to a wide range of phase transitions. Halperin, Hohenburg
and Ma(17) provided a classification of them. Below we briefly review this
theory for some particular phase transitions.
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3.1.1. Critical Fluid. In the case of a liquid in equilibrium with its
gas the density, \, may be used to characterise the state of the fluid.
An isothermal fluid near its critical point has a Helmholtz free-energy func-
tional given by

F=|
V { f (\, T )+

=2

2
|{\|2= dV (13)

where V is a control volume, f (\, T ) is the bulk free-energy density (per
unit volume), = is a gradient energy coefficient, and T is the temperature.
In a simple model f (\, T ) has a double-well form with respect to \ beneath
the critical temperature, TC . The equilibrium situation may be considered
by minimising F subject to the constraint of constant mass. In which case
the Euler�Lagrange equation is given by

=2 {2\&
�f
�\

+*=0 (14)

where * is the Lagrange multiplier associated with conservation of mass.
This equation admits a one dimensional solution in which the density
varies smoothly between two constant values. This solution represents a
diffuse interface separating the different bulk densities associated with the
liquid and gas phases. The interface region increases in width as the tem-
perature increases towards the critical temperature because the double-well
structure of f (\, T ) is lost in favour of a single well as T � T &

C .

3.1.2. Spinodal Decomposition of a Binary Alloy. Cahn and
Hilliard(8, 9) developed a diffuse interface theory for spinodal decomposition
in a binary alloy. In this situation they postulated a free-energy of the form

F=|
V {

=2

2
|{c| 2+ f (c, T )= dV (15)

where V is the volume of the system, c denotes concentration, = is the
gradient energy coefficient and f (c, T ) represents the bulk free-energy den-
sity. Below the spinodal temperature, TS , the bulk free-energy density,
f (c, T ), has a double-well form with respect to c. The evolution equation
for c is chosen consistent with the requirement that the free-energy of the
system decays monotonically in time and that the total quantity of either
component of the alloy is conserved:

�c
�t

=&M{ } {{
$F

$c ==M{2 {=2 {2c&
�f
�c = (16)
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where M is a positive constant. For T<TS the Cahn�Hilliard equation
supports interfaces of a width proportional to = through which the concen-
tration varies continuously between its bulk values given by the common
tangent construction on the free energy curve f (c, T ).

3.1.3. Anti-phase Boundaries. Allen and Cahn(10, 11) studied
anti-phase boundaries in a body centred cubic alloy. They are interfaces
between regions ordered in the same manner but distinguished by a spatial
translation. Here a single order parameter, ,, characterises the ordering of
the bcc lattice, and Allen and Cahn employed a free energy of the system
of the form

F=|
V {

=2

2
|{,| 2+ g(,)= dV (17)

where g(,) is a symmetric double-well of its argument. In this situation ,
is not a conserved quantity (like the composition in the spinodal decom-
position) and the requirement that the free-energy decreases monotonically
in time is met by applying the dynamics:

�,
�t

=&M
$F

$,
=M _=2 {2,&

�f
�, & (18)

where M>0.

3.1.4. Phase-Field Models of a Solid-Liquid Interface. More
recently, Langer, (18, 19) developed a diffuse interface model of the first order
phase transition between the solid and liquid of a pure material, commonly
known as a phase-field model. In this formulation a function, ,(x� , t), is
postulated whose value identifies the phase of the system, e.g., ,=0 solid
and ,=1 liquid. It may be considered as playing the analogous role of the
order parameter in the Cahn�Allen theory of anti-phase boundaries.
However, in the setting of a first order phase transition between a solid and
its liquid its physical interpretation is less clear. A Landau�Ginzburg free
energy for the system is adopted of the form

F=|
V {

=2

2
|{,| 2+ f (,, T )= dV (19)

where f (,, T ) is the bulk free energy of the system which has the form

f (,, T )= g(,)&L
(T&TM)

TM
p(,) (20)
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where p(,) is a monotonic increasing function such that p(0)=0, and
p(1)=1, L is the latent heat per unit volume, TM is the melting tem-
perature of the solid and again g(,) is a symmetric double-well function of
its argument. The equation for the phase field is motivated by requiring the
free energy of the system decreases monotonically in time. It is given by

�,
�t

=&M
$F

$,
=M _=2 {2,&

�f (,, T )
�, & (21)

The associated energy equation is given by

\c
�T
�t

=k {2T&L
�,
�t

(22)

where c is the heat capacity (per unit mass), and k is the thermal conduc-
tivity. Equation (21) and Eq. (22) are the so-called phase-field equations.
Although their derivation briefly described above is ad hoc it can, as shown
by Penrose and Fife, (20) Umantsev(21) Wang et al., (22) Fife and Penrose(23)

and Charach and Fife(24) be placed on a firmer physical footing in the
framework of irreversible thermodynamics.(25)

3.1.5. Discussion. Above we have briefly described diffuse inter-
face models of four different physical situations which, nevertheless, have
several important features in common: A scalar order parameter which dis-
tinguishes the bulk phases, an underlying free-energy functional involving
two terms in its integrand; a square gradient of the order parameter and
bulk free energy with a double-well structure. In addition, the governing
equation for the order parameter is chosen consistent with the second law
of thermodynamics expressed as the requirement that the appropriate free
energy should decrease in time. The generic form of the governing equation
for a non-conserved order parameter is

�,
�t

=M _=2 {2,&
�f (,)

�, & (23)

To illustrate the main ideas we will focus on the case of a non-conserved
order parameter when f (,) is the double-well f (,)= g(,)=,2(1&,)2�4a+
bp(,), where a(>0) and b are constants, and p(,) is a monotonic function
such that p(0)=0, p(1)=1. This corresponds to the Allen�Cahn equation
when b=0 and the phase-field equation when b{0. In one dimension the
steady form Eq. (23) is

=2 d 2,
dx2&

�f (,)
�,

=0 (24)
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which has a first integral

=2

2 _d,
dx&

2

& f (,)=constant (25)

and for b=0 an exact solution

,(x)=,0(x)=
1
2 _1+tanh \x

l +& (26)

where l=2 - 2 = - a. It corresponds to a stationary planar interface in
which , varies smoothly between its bulk values over a distance charac-
terised by l that represents the interface thickness and, we observe, is
proportional to the gradient energy coefficient.

The associated surface energy, #, is given by the excess free energy of
the system

#=|
�

&� {=2

2 }d,0

dx }
2

+ g(,0)= dx (27)

which on using Eq. (25) may be expressed in the either of the following two
forms

#=|
�

&�
=2 } d,0

dx }
2

dx or #=|
1

0
- 2f (,) d, (28)

Using the exact solution Eq. (26) the surface energy is given as

#=
1

6 - 2

=

- a
(29)

Within the interface region the energy density is increased above its bulk
value of zero for two reasons; 0<,<1 and so the double-well bulk energy
term f (,)>0, and |{,|>0 providing a non-zero contribution from the
gradient energy. These separate effects are made plain in the two expres-
sions for the surface energy given in Eq. (28).

For b{0 and the choice p(,)=,2(3&2,), f (,) still retains its
double-well minima at ,=0 and 1 and there is an exact travelling wave
solution of Eq. (23) given by ,(x, t)=,0(x&Vt), when the speed of
propagation of the interface is given by

V=&6 - 2 M=b - a (30)
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We note that both the surface energy of a planar interface for b=0 and the
speed of propagation of a moving interface for b{0 are isotropic in that
they are independent of the orientation of the interface. We now go on to
investigate anisotropic diffuse interface models.

3.2. Anisotropic Diffuse Interface Models

For phase transitions involving a crystalline solid phase the sym-
metries associated with the atomic lattice may be expressed in observable
physical quantities, such as the surface energy, being anisotropic.

3.2.1. Phase-Field Model. An early attempt to include anisotropy
into a phase-field model was due to Caginalp and Fife(26) who considered
the case of a Bravais atomic lattice. They suggested modifying the square
gradient in the free-energy functional:

F=|
V {

=2

2
[a1(,x)2+a2(,y)2]+ f (,, T )= dV (31)

which results in a ``stretched'' laplacian operator in the phase-field equa-
tion. Subsequently, Kobayashi(27) motivated by the dependence of the sur-
face energy on = in the expression for the surface energy in the isotropic
case, Eq. (29), proposed that it be a function of the orientation of the direc-
tion of {,, e.g., in two dimensions =(%), where % is the polar angle that
describes the direction of {,. In this formulation the resulting phase-field
equation appears rather complicated. In two dimensions it is given by

�,
�t

=M {=2(%) {2,+=(%) =$(%) {% } {,

+
1
2

[=(%) =$(%)]$ [,x%y&,y %x]&
�f (,)

�, = (32)

Kobayashi identified the surface energy anisotropy associated with this for-
mulation as an important feature in the numerical simulation of dendritic
solidification using the phase-field equations.

Taylor(28) suggested a more general formulation of the phase-field
equations that includes models of Caginalp and Fife and Kobayashi as
special cases. Again the starting point is the free-energy function. Taylor
proposed the form

F=|
V {

=2

2
[1 ({,)]2+ f (,, T )= dV (33)
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where 1 ( p� ) is a homogeneous degree one function of its argument. The
phase-field equation is then given by

�,
�t

=&M
$F

$,
=M {=2{ } [1 ({,) !9 ({,)]&

�f
�,= (34)

where the cartesian components of !9 ({,) are given by

! j ( p� )=
�1 ( p� )

�pj
, j=1,..., 3 (35)

and by comparison with the definition of the !-vector, Eq. (11), for the
sharp interface we see that !9 ({,) provides the natural extension of the
definition of the !-vector to phasefield models. In contrast to the sharp
interface case !9 ({,) is a vector field which is defined throughout the whole
domain, both within and outside the interfacial region, rather than just on
the surface of the interface which is the case in the original Cahn�Hoffman
formulation for a sharp interface model. The orientational dependence of
the surface energy of a stationary planar interface is proportional to 1 (&� )
where &� ={,�|{,|. For the case f (,)=,2(1&,)2�4a it is given explicitly by

#(&� )=
1 (&� )

6 - 2

=

- a
(36)

3.2.2. Vector Phase-Field Model. A recent extension of phase-
field models to describe more than two phases with anisotropic interfaces,
such as crystal grains, is due to Diepers et al.(29) and Nestler and
Wheeler.(30) In this formulation an ensemble of N phases is modeled by
employing N phase-field functions, ,j , j=1,..., N, such that

:
N

j=1

,j=1 (37)

The phase-field function, ,: , identifies the phase labelled :, which is
characterised by ,j=0, j{:, and ,:=1. We will regard the phase-field
functions as the components of a phase-field vector ,9 =(,1 , ,2 ,..., ,N).
A free energy for the system is postulated of the form

F=|
V

L(,9 , {,9 ) dV (38)
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where, in an analogous way to the anisotropic phase-field model for a
solid-liquid interface, the Lagrangian density, L(,9 , {,9 ), is given by

L(,9 , {,9 )= :
N

;=1

:
:<;

[ 1
2=2[1:;(r� :;)]2+ g:;(,9 )]

+ :
N

:=1

b:(T ) ,:+* _ :
N

:=1

,:&1& (39)

Here

r� :;=,:{,;&,;{,: (40)

1:;(r� :;) is defined to be a homogeneous degree one function of its argu-
ment, g:;(,9 )=,2

:,2
; �4a:; , with a:; (=a;:)>0, represents the double-well

component of the free-energy density between the phases : and ;, and
b:(T ) ,: is the bulk free-energy density of phase :. The constraint Eq. (37)
has been invoked with the Lagrange multiplier *.

The governing equations are given by the gradient flow

�,+

�t
=&M({,9 )

$F

$,+
, for +=1,..., N (41)

where M({,9 ) (>0) represents an anisotropic mobility. Using the form for
the Lagrangian density, L(,9 , {,9 ), Eq. (39), the governing equations are
given explicity as

1

M({,9 )

�%+

�t
= :

N

:{+ _=2[{ } (#:+(r� :+) !9 :+ ,:)+#:+(r� :+) !9 :+ } {,:]&
1
4

�g:+

�,+ &
&b+(T )&* (42)

for +=1,..., N. The Lagrange multiplier may be found, using the constraint
Eq. (37), to be

*= :
N

+=1

,+ { :
N

:{+ _=2[{ } (1 (r� :+) !9 :+,:)+#:+(r� :+) !9 :+ } {,:]&
1
4

�g:+

�,+ &
&

1

M({,9 )

�,+

�t
&b+(T )= (43)

Here, !9 :; represents the !-vector between the phases labelled : and ;
which, in the spirit of Wheeler and McFadden, (40) is given by

!9 :;(r� :;)=
�1:;(r� :;)

�r� :;
={r� :;

#:;(r� :;) (44)
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For the special case, N=2, corresponding to just two phases present,
,1+,2=1, this model reduces to the standard anisotropic phase-field
equation, Eq. (34), for either ,1 or ,2 . The corresponding associated
generalised !-vector's are

!9 12={{,1
112({,1); !9 21={{,2

121({,2) (45)

and the surface energy of a planar interface is given by

#12=
1

6 - 2

=

- a12

112(&� 12) or #21=
1

6 - 2

=

- a21

121(&� 21) (46)

where &� 12={,1�|{,1| and &� 21={,1 �|{,2 |. Because the surface energy of
an interface is unaffected by exchanging the two phases we find that
112( p� )=112(&p� ), and hence from Eq. (45) that !9 12=&!9 21 .

For the general case, N>2, we observe that there are N(N&1) !-vec-
tors, !9 :;(r� :;). The vectors r� :; and r� ;: (=&r� :;) are both associated with the
interface between the phases labelled : and ;, which has surface energy
proportional to 1:;(&:;), where &:;={,:�|{,: |. This formulation represents
a natural extension of the anisotropic phase-field model for two phases using
the generalised !-vector formulation.

Phase-field models assume that the form of surface energy anisotropy
is known a priori, through the specification of the functions 1:;( p� ), deter-
mined by, for example, experiments or symmetry arguments based on the
crystallographic structure of the material. It is rather at odds with the
notion that phase-field models attempt to provide a description of the inte-
rior structure of the interface. This, along with the uncertain physical
character of the phase-field variables, is a rather unsatisfactory state of
affairs. We now describe a diffuse interface model of solid state ordering
transitions in a face centred cubic (fcc) material where both these dif-
ficulties are addressed.

3.2.3. Multiple-Order-Parameter Models. We focus upon
ordering transitions in a fcc alloy, e.g., Cu&Au. This situation has been
considered by Kikuchi and Cahn(31, 32) using a discrete model based on the
cluster variation method, Lai(33) and Braun et al.(12) who developed diffuse
interface models which we now describe. The fcc lattice is shown schemati-
cally in Fig. 3 and consists of four interpenetrating cubic sublattices
denoted I, II, III, IV, which we assume are decorated by either A or B
atoms of the alloy. The variables \I , \II , \III , \IV denote the fractions of
atom A on the four corresponding sublattices and, as such, they represent
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Fig. 3. A schematic of diagram of an fcc lattice showing the four sub-lattices labelled I, II,
III and IV.

physically observable quantities. We define four corresponding order
parameters by

X0= 1
4 [\I+\II+\III+\IV] (47)

X1= 1
4 [\I+\II&\III&\IV] (48)

X2= 1
4 [\I&\II+\III&\IV] (49)

X3= 1
4 [\I&\II&\III+\IV] (50)

Here, X0 , the average over the four sublattices represents the concentration
of A, and X1 , X2 , X3 are non-conserved order parameters that can vary
between plus and minus one half and indicate the ordering on the lattice.
Different uniform bulk phase are possible: A disordered phase in which
there is no distinguished sublattice hence \I=\II=\III=\IV=X0 and
X1=X2=X3=0; a L12 phase (using Strukturbericht notation) where one
of the sublattices (I say) is distinguished from the others so \I{\II=\III=
\IV whence X1=X2=X3{X0 ; a L10 phase in which two of the sublattices
(I and II say) are distinguished from the remaining pair so \I=\II{\III=
\IV and hence X0{X1 and X2=X3=0. We limit our discussion to situa-
tions in which the composition is fixed.

The free energy for the system is assumed to have the form

F=|
V {'jlkm

�Xj

�xl

�Xk

�xm
+ f (X1 , X2 , X3)= dV (51)
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where the term proportional to 'jlkm is the gradient energy contribution
and f (X1 , X2 , X3) is the bulk energy term and we have employed the
Einstein summation convention. Symmetry considerations that respect the
underlying fcc lattice require that f (X1 , X2 , X3) is invariant to both cyclic
permutations of its arguments and the interchange of the signs of any two
of its arguments. Assuming a quartic polynomial form for f (X1 , X2 , X3) in
the order parameters gives that

f (X1 , X2 , X3)=a0+a2(X 2
1+X 2

2+X 2
3)+a3X1 X2 X3

+a41(X 4
1+X 4

2+X 4
3)+a42(X 2

1X 2
2+X 2

2X 2
3+X 2

1 X 2
3) (52)

where a2 , a41 , a42 are assumed constant and a0 is assumed to depend
linearly on temperature. The bulk phases are given by local minima of the
bulk free energy density.

Symmetry considerations also require that the gradient energy term
has the form

A
2 _\

�X1

�x +
2

+\�X2

�y +
2

+\�X3

�z +
2

&
+

B
2 _\

�X1

�y +
2

+\�X1

�z +
2

+\�X2

�x +
2

+\�X2

�z +
2

+\�X3

�x +
2

+\�X3

�y +
2

&
(53)

where A and B are constants. When A=B this reduces to a square gradient
form and represents the isotropic case. However, in general, the degree of
anisotropy increases as |1&B�A| increases in value. The coefficients A and
B may be interpreted as representing the bond energy of the nearest and
second nearest neighbours on the lattice, see Braun et al.(12)

It is convenient to think of this model as a particular case of the class
of diffuse interface models in which there are N non-conserved order
parameters and the free energy of the system is given by

F=|
V {

=2

2
:

i=N

i=1

[1i ({Xi)]2+ f (X1 , X2 , ..., XN)= dV (54)

The governing equations for the order parameters are

�Xi

�t
=&M

$F

$Xi
(55)

=M _{ } (1i ({Xi) !9 i)&
�f

�X i& (56)
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for i=1,..., N. Here !9 i are the so-called sub-!-vectors associated with each
order parameter whose cartesian components are defined by

!9 j
i =

�1i ({Xi)
�Xi, j

(57)

The fcc model is recovered for N=3 when ==- A and

1i ({Xi)=�ai1 \�Xi

�x +
2

+ai2 \�X i

�y +
2

+ai3 \�Xi

�z +
2

(58)

for i=1,..., 3, where

aij=B�A+(1&B�A) $ij (59)

and $ij is the Kronecker delta.
In contrast to the previous phase-field models we are unable to

immediately determine the surface energy of a planar interface (for N>1),
and in consequence make a direct connection with the !-vector of the
corresponding sharp interface formulation. In the previous models the sur-
face energy anisotropy was given explicity in terms of the homogeneous
degree one functions occurring in the gradient energy terms, e.g., 1 (n� ) in
the scalar phase-field model. Here, the surface energy has to be determined
from the model directly by computing the dependence of the excess free
energy associated with a stationary planar interface with unit normal n� . In
this one-dimensional situation the governing equations become:

[1i (n� )]2 �2Xi

�\2 &
�f

�Xi
=0 (60)

subject to boundary conditions Xi � X \�
i as \ � \�, where the coor-

dinate \ has been scaled so that =\ measures distance through the interface,
and X \�

i are the values of the order parameter in the bulk phases. The
surface energy is given by

#(n� )== |
+�

&� { 1
2 :

i=3

i=1

[1i (n� )]2 [Xi, \]2+ f& f �= d\ (61)

where f � is the free energy of the bulk phases. On using a first integral of
Eq. (60) the surface energy may be expressed as

#(n� )== :
i=3

i=1

[1i (n� )]2 Ii (n� ) (62)
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Fig. 4. The surface energy anisotropy computed from the multiple-order-parameter model (56).

where Ii (n� ) is the functional

Ii (n� )=|
+�

&�
[Xi, \]2 d\ (63)

Equation (62) represents the surface energy as a functional of the solution
of Eq. (60). In Fig. 4 we show the dependence of the surface energy on the
orientation of the interface, n� , calculated for the case of an interphase
boundary for a fcc material between the disordered and L12 phases.

The general class of anisotropic models Eq. (54) and Eq. (55) con-
tains, as a special case, the scalar anisotropic phase-field model discussed
in Section 2.2.1 when N=1. When N=3 it also includes the diffuse inter-
face model of phase transitions on a hexagonally closed packed lattice
recently developed by Cahn, Han and McFadden.(34)

4. SHARP INTERFACE LIMIT

The relationship between diffuse interface and sharp interface models
may be established by taking the, so-called, sharp interface limit. To
illustrate the idea we initially focus our attention on the isotropic phase-
field model discussed in Section 2.1.4. In that section we showed that the
solution to the phase-field equation corresponding to a planar interface is
,0(x&Vt), where the interface speed, V, is given by Eq. (30). Associated
with this solution is an interface thickness, surface energy and a mobility
given by

l=2 - 2 = - a, #=
1

6 - 2

=

- a
, m=&6 - 2 M=b - a (64)
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respectively, where the mobility, m, is defined by V=mb and b= f (1)&
f (0) is the bulk free energy difference. In general, we expect that the thick-
ness of the interface will be small compared to its radius of curvature and
in this situation the expressions given in Eq. (64) for a planar interface will
remain good approximations when the interface is curved. With this in
mind we non-dimensionalise using the following reference scales; length
with respect to, R, a typical radius of curvature of the interface, time with
respect to, {, the thermal diffusion time, energy per unit volume with
respect to #�R. The non-dimensional forms of the interface thickness, sur-
face energy and mobility are

l� =2 - 2 $� , #� =1=
1

6 - 2

$�
a�

, m� =6 - 2 M� $� (65)

respectively, where

a� =
a#
R

, $� =
= - a

R
, and M� =

M{=

6 - 2 R - a
(66)

Here an overbar denotes a dimensionless quantity. We observe that the
interface thickness is proportional to $� and hence in the limit, $� � 0, the
interface thickness shrinks to zero; the sharp interface limit. In this limit
Eq. (65) indicates that we require that $� =6 - 2 a� and M� =m� �(6 - 2 $� ),
where m� is treated as an order one constant. The asymptotic analysis of the
phase-field equation is conducted using a singular perturbation analysis.
The solution is expanded in a regular perturbation series in the bulk phases
(the ``outer regions'') away from the interface in a straightforward way.
In the interface region (the ``inner region'') distance through the interface
is resealed with respect to the dimensionless length scale, $� , characteristic
of the dimensionless thickness of the interface. The solution is again
expanded as a perturbation series in $� :

,=,(0)(\)+$� ,(1)(\)+O($� 2) (67)

Here \=r�$� , where (r, s) are body fitted coordinates; r and s locally repre-
sent dimensionless distance parallel to the normal and tangent directions to
the curve ,=1�2 respectively. In dimensionless form the phase-field equa-
tion is

�,
�t�

=
m�
$� 2 _d 2,

d\2 &
dg� (,)

d,
&$�

b�

6 - 2

dp(,)
d, & (68)
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Inserting the form for , given by Eq. (67) into Eq. (68) gives at leading
order that

,(0)(\)=
1
2 _1+tanh \ \

2 - 2+& (69)

which is the dimensionless form of the solution Eq. (26) obtained above for
a stationary planar interface. At next order the equation for ,(1)(\) is given
by

d 2,(1)

d\2 &,(1) d 2g� (,(0))
d,2 =

b�

6 - 2

dp(,(0))
d,

&\K+
V�
m� +

d,(0)

d\
(70)

The linear operator on the left hand side is self adjoint and is satisfied by
d,(0)�d\, which gives the following solvability condition:

\K+
V�
m� + |

+�

&� _d,(0)

d\ &
2

d\=
b�

6 - 2 |
+�

&�

dp(,(0))
d,

d,(0)

d\
d\ (71)

Evaluating the integrals and assuming that the free energy difference is
b=&L(T&TM)�TM where L is the latent heat per unit volume gives (in
dimensional form)

T=TM&
#TM

L
K&

1
+

V (72)

the Gibbs�Thomson equation modified for interface kinetics; + is the
so-called interface mobility which is related to the mobility m above by
+=Lm�TM .

The description of the sharp interface asymptotic analysis sketched
above is for a particular distinguished limit which ensured that both
kinetics and surface energy appeared as order one quantities in the
Gibbs�Thomson equation. Caginalp(35) conducted the sharp interface
analysis of the phase-field equations for a comprehensive range of dis-
tinguished limits and demonstrated that a range of free boundary problems
were recovered. In addition, Karma(36) has found a new limit relevant to
using phase-field models to compute dendritic growth a low undercoolings.

In the case of anisotropic surface energy the sharp interface asymptotic
analysis has been conducted in a similar manner by refs. 37, 38, and 39 to
recover the anisotropic Gibbs�Thomson equation which includes interface
attachment kinetics. The more general three-dimensional case has been
considered by Wheeler and McFadden(40) who exploited the !-vector for-
mulation of the anisotropic phase-field model. The !-vector formulation
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has also been employed to good effect in conducting the sharp interface
analysis in three dimensions for both the vector phase-field model(30) and
the multiple order parameter model.(41) In the former case the sharp inter-
face form of the !-vector is !9 :;(n� ) or !9 ;:(n� ) at the interface between the
phases labelled : and ;. The latter case is more complicated. The sharp
interface form of the !-vector is a linear combination of the sub-!-vectors
given by

!9 = :
N

i=1

!9 i (n� ) 1i (n� ) Ii (n� ) (73)

All these cases applied the same distinguished limit as described above and
found that the resulting form to the Gibbs�Thomson equation included an
anisotropic kinetic term, even when the mobilities in these equations (e.g.,
M in the phase-field equation) are assumed to be constant.

5. TYPE OF THE PHASE-FIELD EQUATION

In this section we show that the generalised !-vector plays an impor-
tant role in determining the type of the phase-field equation This has been
considered in two dimensions by Fife.(42) Courant and Hilbert(43) give the
general theory of the type of partial differential equations.

To illustrate the ideas we restrict our discussion to the steady case.
The anisotropic form of the steady phase-field equation is

=2{ } [1 ({,) !9 ({,)]&
df (,)

d,
=0 (74)

which is a quasi-linear partial differential equation that may be written as

=2 :
j=3

j=1

:
k=3

k=1

a jk
�2,

�x jxk
&

df (,)
d,

=0 (75)

Here the coefficients ajk are the components of the tensor

a=!9 �!9 +1 ({,) {p� !9 (76)

where !9 is regarded as a function of p� ={, and {p� is the gradient operator
with respect to the coordinates p� . In the two-dimensional case Eq. (75)
expressed in cartesian coordinates is

=2[a11({,) ,xx+2a12({,) ,xy+a22,yy]&
df (,)

d,
=0 (77)
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where

a11({,)=
1

|{,|2 [1 (%)2 |{,|2&21 (%) 1 (%)$ ,x ,y+[1 (%) 1 (%)$]$ ,2
y]

a12({,)=
1

|{,|2 [1 (%) 1 (%)$ [,2
x&,2

y]&[1 (%) 1 (%)$]$ ,x,y]

a22({,)=
1

|{,|2 [1 (%)2 |{,|2+21 (%) 1 (%)$ ,x ,y+[1 (%) 1 (%)$]$ ,2
x]

Equation (77) may be recast as the first order system

C
�p�
�x

+D
�p�
�y

+
1
=2 g� =0

where

C=\a11

0
0

&1+ , D=\2a12

1
a22

0 + , g� =\&df�d%
0 +

The characteristic equation is |C&{D|=0, which gives that

{=
a12({,)\i |{,|2 1 (%)3�2

- 1 (%)+1 (%)"
a22({,)

where i=- &1. Hence, the steady phase-field equation changes type when
1 (%)+1 (%)" changes sign; 1 (%)+1 (%)">0 it is elliptic, 1 (%)+1 (%)"=0
parabolic, and 1 (%)+1 (%)"<0 hyperbolic. In two dimensions the cur-
vature of the 1�#-plot is proportional to #+#" and hence to 1+1" (as #
is proportional to 1 ). Thus the type of the steady phase-field equation at
a point in space is determined by the sign of the curvature of the 1�#-plot
in the direction parallel to {,; if the 1�#-plot is convex then it is elliptic
everywhere otherwise there may be regions of space where it is hyperbolic.

For 1+1"=0, { is a repeated root with value !1�!2, where !1 and !2

are the cartesian components of !9 . Hence, there is a single family of charac-
teristic curves everywhere parallel to the generalised !-vector. The corre-
sponding characteristic equation is found to be

=2!9 }
d {,

ds
=

1
!

df
d,

(78)
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where !=|!9 |, s denotes distance along the characteristic, and !=|!9 |.
Equation (78) can be written as

=2 d1 ({,)
ds

&
1
!

df
d,

=0 (79)

which may be integrated using the property of the !-vector that d1=!9 } dp�
to give that =21 ({,)2�2& f (,) is constant along the characteristic. We note
that this is the same conserved quantity that emerges in the one-dimen-
sional form of the steady phase-field equation; the anisotropic form of
Eq. (25).

The type of the steady phase-field equation may be studied for the
three dimensional case using a different approach which examines the form
of of the differential operator appearing in Eq. (74) in a new system of
coordinates. In Appendix A we evaluate the components of the tensor a in
a system of coordinates (s1 , s2 , s3) which are locally body fitted to the 1�1
surface and find that the local form of the differential operator of the
phase-field equation is

=2 {1 ({,) K1 _!
�2,

�(s1)2&2:1

�2,
�s2 �s3&+1 ({,) K2 _!

�2,
�(s2)2&2:2

�2,
�s2 �s3&

+_ �
�s3 \1 ( p� )

�#( p� )
�s3 +& �2,

�(s3)2= (80)

where :1 and :2 are constants and K1 and K2 are the principal curvatures
on the 1�1 surface. This shows that the phase-field equation will change
type when either of the principal curvatures of the 1�#-plot changes sign,
i.e., it looses its convexity (as in two dimensions).

6. THERMODYNAMIC BASIS OF PHASE-FIELD MODELS

In this section we review the thermodynamic basis of the phase-field
model and show how the notion of a stress tensor emerges naturally from
the underlying variational principal as well as from irreversible ther-
modynamics when motion of the material is allowed.

6.1. Thermodynamic Interpretation of !9

Our starting pointing point is the entropy for a material volume 0(t)
which we write as the gradient energy functional

S=|
0(t)

[\s& 1
2=2

S1 2({,)] dV (81)
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where \ is the density and s is the entropy per unit mass. The first term in
the integrand, \s, is the classical entropy density (per unit volume) and the
second is a nonclassical term associated with spatial gradients of the phase
field. Here the gradient entropy coefficient =S is assumed to be a constant.
The internal energy, E, associated with the material volume is assumed to
have the form

E=|
0(t)

\e dV (82)

where e is the internal energy per unit mass. The internal energy balance
law is

dE

dt
+|

$0(t)
q� E } n� dA=0 (83)

where n� is the outward unit normal to $0(t) and q� E is the internal energy
flux. In addition, the entropy balance takes the form

dS

dt
+|

$0(t)
q� S } n� dA=|

0(t)
s* prod dV (84)

where q� S is the entropy flux and s* prod is the local rate of entropy produc-
tion. The second law of thermodynamics is then expressed by the require-
ment that s* prod is positive.

To proceed we recast the conservation laws (83)�(84) as differential
equations. These are used to express the local entropy production in terms
of the fluxes q� E , and q� S , as well �,��t as

s* prod=
1
T {=2

F { } (1 ({,) !9 )&\
�e
�,=

�,
�t

+{ } \q� S&
q� E

T
&

=2
F

T
1 ({,) !9

�,
�t ++q� E } { \1

T+ (85)

where =2
F=T=2

S . We may ensure that s* prod is positive by putting

�,
�t

=M {=2
F { } (1 ({,) !9 )&\

�e
�,= (86)

and

q� E=k� { \1
T+&=2

E1 ({,) !9
�,
�t

, q� S=
k�
T

{ \1
T++=2

S 1 ({,) !9
�,
�t

(87)
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where k� �T 2 is the thermal conductivity. We observe for the case when the
density is constant that the phase-field equation, Equation (34), is consis-
tent with the second law of thermodynamics. Further, we note that the part
of the internal energy and entropy fluxes due to the change of state, rather
than heat flow, is in the direction parallel to the !-vector.

6.2. Stress Tensor

The procedure briefly described above to obtain the entropy produc-
tion can be extended to allow for motion of matter. In this case the kinetic
energy must be included in the total energy E by the addition of a term
\u2�2 in the integrand of Eq. (82) where u� is the velocity of the material.
An additional balance law is asserted for linear momentum. Further details
can be found in Anderson et al.(44, 45) who have recently included convec-
tion into a phase-field model of a pure material using this approach. In the
isothermal case the form for the entropy production is then

s* prod=
1
T {m+=2

F1 ({,) !9 �{,+_p&
=2

F

2
1 ({,)2& I= : {u�

+
1
T {=2

F { } (1 ({,) !9 )&\
�e
�,=

D,
Dt

+{ } \q� s&
q� E

T
&

=2
F

T
1 ({,) !9

D,
DT+

(88)

where m is the stress tensor, p is the pressure, and D�Dt#���t+u� } { is the
material derivative. The first term is new and arises due to the motion of
the matter. We observe that the stress tensor has a part,

5=_& p+
=2

F

2
1 ({,)2& I&=2

F1 ({,) !9 �{, (89)

which does not contribute to the entropy production; the so-called revers-
ible part of the stress tensor. Fried and Gurtin(46, 47) and Gurtin(48) first
identified this stress tensor by adopting an alternative mechanical
approach.

The stress tensor also results directly from the variational formulation
of the equilibrium situation, in which the energy of the system is minimised
subject to the constraints of fixed total mass and entropy. We set

$ |
V _\e&*S\s&*M\+

*S =2
S

2
1 2({,)& dV=0 (90)
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where *S and *M are Lagrange multipliers associated with the constraints
on entropy and mass respectively. Taking variations with respect to $s, $\,
and $, gives *S=T and *M=+, the chemical potential. It follows that
*S =2

S==2
F . At equilibrium, the integrand in Eq. (90) can therefore be

expressed in the form L=&p+ 1
2=2

F 1 2({,). We observe that L is transla-
tionally invariant and hence Noether's theorem(49) shows that there exists
a divergence free tensor

LI&
�L

�{,
�{,=\& p+

=2
F

2
1 ({,)2+ I&=2

F1 ({,) !9 �{, (91)

which we note is identical to the 5-tensor.
In general the 5 tensor is not symmetric and there is an associated

body couple distribution =21 ({,) {,_!9 . Hence surface energy anisotropy
induces a body couple within the interface. This is because anisotropy
allows the interface to reduce its surface energy by local rotation as well as
curve shortening which is the only mechanism available when the surface
energy is isotropic. Wheeler and McFadden(41) show that in the sharp
interface limit the force per unit length acting on a line element within the
interface is identical to Eq. (8) obtained by Hoffman and Cahn.(1)

The 5 tensor has numerous other uses: When allied to the divergence
theorem it provides a succinct derivation of the anisotropic form of the
Gibbs Thomson equation (7) in the sharp interface limit using a pill-box
control volume, (50) as well as force balances for edges and multijunctions.
It is the latter two applications that we now consider.

6.2.1. Edges. When the surface energy is so pronounced that the
1�#-plot is not convex then, as we have seen above, the steady phase-field
equations are hyperbolic and the Wulff equilibrium shape will include mis-
sing orientations, e.g., edges. We therefore anticipate that solutions of the
phase-field equation will allow solutions that involve shocks to represent
the edges. Wheeler and McFadden(41) showed that in this situation the
edge comprised the junction of two diffuse interfaces at which , is con-
tinuous but {, is not. The situation is sketched in Fig. 5 in which two
interfaces, labelled 1 and 2 intersect to form an edge. We construct a cylin-
drical control surface, S, which contains the the edge region and per-
pendicularly intersects the two interfaces far away from the edge; the
contributions from the end caps of the cylinder can be ignored. The
divergence theorem gives

|
S

5 } n� dA=0 (92)
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Fig. 5. A schematic diagram of an edge. The control surface S cuts the diffuse interfaces at
right angles. The vector l9 , in the direction of n� 1_n� 2 , points into the page. The vector N9 is the
unit normal to the surface of discontinuity, 7.

where n� is the unit normal to S. In the, bulk regions away from the inter-
faces 5 is zero and so the only the non-zero contributions are from the
parts of S which intersect the interfaces. If we now take the sharp interface
limit then we find that

!9 1_l9 +!9 2_l9 =0 (93)

where !9 1 and !9 2 are the !-vectors associated with each interface evaluated
at the edge. This is the same equation as given by Cahn and Hoffman; it
represents a force balance for the edge in the plane normal to l9 and requires
that the component of the !-vector perpendicular to the edge direction l9 is
continuous.

The jump conditions on the phase field at the surface 7 on which
{, is discontinuous may be examined by minimising the underlying free
energy subject to the constraint that , is continuous on 7. This results in
the conditions

11!9 1 } N9 =12 !9 2 } N9 =_1
2

(1 2
1&1 2

2)&<_�,1

�N
&

�,2

�N & (94)

at 7. It resembles a common tangent condition. For the special case of two
flat interfaces it recovers (93) and gives that the tangent vector to 7,
denoted m� in Fig. 5, is parallel to

!9 1&[!9 1 } l9 ] l9 =!9 2&[!9 2 } l9 ] l9 (95)
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i.e., the plane 7 is spanned by l9 and the common component of the two
!-vectors which is orthogonal to l9 .

6.2.2. Multi-junctions. The vector phase-field model and the
multiple-order-parameter model both allow for the existence of more than
two bulk states and hence the possibility of multiple junctions where
several bulk states meet. A divergence-free stress tensor may be derived,
using Noether's theorem, for these models as well. It is given by

5V==2 :
N

;=1

:
:<;

1:;(r� :;) !9 :;�r� :;+L(,9 , {,9 ) I (96)

for the vector phase-field model where L(,9 , {,9 ) is the Lagrangian density
given by Eq. (39), and

5M==2 :
N

i=1

1i ({X i) !9 i�{Xi+{=2

2
:
N

i=1

1i ({Xi)
2+ f = I (97)

for the multiple-order-parameter model. To examine a stationary multi-
junction we again construct a control surface, S, which contains the
junction and perpendicularly intersects the interfaces emanating from it.
Applying the divergence theorem and evaluating the non-zero parts of the
surface integral from the interfacial regions in the sharp interface limit gives

l9 _ :
i=N

i=1

!9 i=0 (98)

where l9 is the unit vector parallel to the junction. This again is the same
result given by Hoffman and Cahn. It represents a force balance at the
junction; for the isotropic case it reduces to Young's Law.

6.2.3. Conserved Order Parameter Models. The stress tensor
may also be derived for conserved order parameter models using Noether's
Theorem applied to the equilibrium situation. The conserved quantity is
invoked with the introduction of a Lagrange multiplier. For the Cahn�
Hilliard equation it is given by

5CH=&=2 {c�{c+[=2[c {2c+ 1
2 |{c|2]+ f (c)&cfc] I (99)

and for the case of a critical fluid it is given by

5CF=&=2 {\�{\+=2(\ {2\+ 1
2 |{\| 2) I (100)

This is the so-called capillary tensor first identified by Korteweg.(51)
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7. KINETICS

The concept of a !-vector also plays a useful role in front propagation
in anisotropic media where the front speed depends on its orientation:

vn=+(n� ) (101)

Here n� is the outward unit normal to the front. This is a situation that
arises in many areas from wave propagation in an $olotropic linearly
elastic medium (see Musgrave(52)) to the kinetically controlled growth of a
crystal into an undercooked melt.

We define the cartesian components of the !-vector in the same way
as before

! j=
�+( p� )

�p j (102)

where +( p� ) is the homogeneous degree one extension of +(n� ). We put r� =t!9
and note that

vn=
dr�
dt

} n� =!9 } n� =+(n� ) (103)

where the last step follows from the property of the !-vector given by
Eq. (5). Hence we find that r� =t!9 provides an exact solution to Eq. (101).
The !-plot provides the self-similar shape of the front that is achieved at
long times. In the setting of anisotropic elastic waves the 1�+-plot is the
slowness surface which plays a prominent role in their theoretical descrip-
tion. In the context of kinetically controlled crystal growth Frank(53)

showed that a Gibbs�Wulff construction based on the +(n� )-plot could be
used to determine the long-time growth shape, which in view of the equiv-
alence of the !-plot and the Gibbs�Wulff construction is consistent with the
solution r� =t!9 .

Braun et al.(54) have recently combined the diffuse interface and sharp
interface approaches. They employed the multiple-order-parameter model
of ordering transitions in an fcc material discussed in Section 3.2.3 to deter-
mine numerically the mobility function +(n� ) for some particular antiphase
boundaries. They used this to determine the resulting long-time interface
shapes for kinetically controlled growth by computing the !-vector of the
corresponding sharp interface model, and in particular to study the effect
increasing the degree of anisotropy characterized by the ratio of the
gradient energy coefficients B�A in Eq. (59).

1273Cahn�Hoffman !-Vector



8. CONCLUSION

In this paper we have reviewed two important theoretical develop-
ments to which J. W. Cahn has made major contributions: The theory of
the !-vector developed by Hoffman and Cahn that provides an elegant
setting for the analysis of the equilibrium shapes of sharp interfaces in the
presence of anisotropic surface energy, and diffuse interface theories of
interfaces with anisotropic surface energy. We have described recent work
which connects these two aspects by the development of a generalized
!-vector for diffuse interface models. We have shown that the !-vector
plays a central role in the diffuse interface theory: It provides a useful
means of examining the sharp interface limit; it is related to the entropy
flux associated with the interface motion; it forms an essential part of the
reversible part of the associated stress tensor whereby it allows a connec-
tion to the notion of stress in the interface.

APPENDIX A. 1�1 -FITTED COORDINATES

We consider a=!9 �!9 +1 ({,) {p� !9 in the vicinity of some point p� 0 .
We introduce surface fitted coordinates to the 1�1 surface, denoted P0 ,
defined by | p� |=A�1 ( p� �| p� | ) where A is a constant, which passes through
p� 0 . To this end we define new coordinates (s1, s2, s3) by

p� =P9 (s1, s2)+s3n� (s1, s2) (104)

where p� =P9 (s1, s2) is the surface P0 , n� (s1, s2) is the normal to P0 and s1 and
s2 parameterise P0 and measure distance in the direction of the principal
directions at p� 0 . The basis vectors are

e� 1=[1+s3K1(s1, s2)] t� 1(s1, s2)

e� 2=[1+s3K2(s1, s2)] t� 2(s1, s2) (105)

e� 3=n�

where t� 1(s1, s2) and t� 2(s1, s2) are orthonormal tangent vectors to P0 and
K1 , K2 are its principal curvatures. The metric tensor is

[1+s3K1(s1, s2)]2 0 0

gij=\ 0 [1+s3K2(s1, s2)]2 0+ (106)

0 0 1
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We now evaluate !9 in this coordinate system. The !-vector is defined by
{1 ( p� ) and is given by

!9 =
�1 ( p� )

�s1 |~ 1+
�1 ( p� )

�s2 |~ 2+
�1 ( p� )

�s3 |~ 3

=
1

[1+s3K1(s1, s2)]2

�1 ( p� )
�s1 t� 1+

1
[1+s3K2(s1, s2)]2

�1 ( p� )
�s2 t� 2+

�1 ( p� )
�s3 n�

(107)

where the |~ 1, |~ 2, |~ 3 are the reciprocal basis vectors.
Now !9 is in the direction of the normal to the 1�1-plot so !9 on the sur-

face P0 is given by |!9 (s1, s2, 0)| n� and we deduce that

�1 ( p� )
�s1 } s3=0

=
�1 ( p� )

�s2 } s3=0

=0 (108)

and

|!9 (s1, s2, 0)|=
�1 ( p� )

�s3 } s3=0

(109)

Moreover, !9 satisfies 1 ( p� )=!9 } p� , and hence on P0

1 (P9 )=|!9 (s1, s2, 0)| n� } P9 (s1, s2) (110)

and so

|!9 (s1, s2, 0)|=
1 (P9 )

n� } P9 (s1, s2)
(111)

Thus

� |!9 (s1, s2, 0)|
�s1 =

1

n� } P9 (s1, s2)

�1 (P9 )
�s1 } s3=0

&
1 (P9 )

[n� } P9 (s1, s2)]2 _P9 }
�n�
�s1+n� }

�P9
�s1&
(112)

which simplifies to give

� |!9 (s1, s2, 0)|
�s1 =&:1K1 (113)

where

:1=
1 (P9 ) t� 1(s1, s2) } P9 (s1, s2)

[n� } P9 (s1, s2)]2
(114)
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Similarly

� |!9 (s1, s2, 0)|
�s2 =&:2K2 (115)

where

:2=
1 (P9 ) t� 2(s1, s2) } P9 (s1, s2)

[n� } P9 (s1, s2)]2
(116)

Using these results we find that

�!9 (s1, s2, 0)
�s1 =

� |!9 (s1, s2, 0)|
�s1 n� +|!9 (s1, s2, 0)|

�n�
�s1=[|!9 (s1, s2, 0)| t� 1&:1n� ] K1

(117)

and similarly

�!9 (s1, s2, 0)
�s2 =[|!9 (s1, s2, 0)| t� 2&:2n� ] K2 (118)

Now

�!9 (s1, s2, s3)
�s3

=_ 1
[1+s3K1(s1, s2)]2

�21 ( p� )
�s3s1 &2

K1(s1, s2)
[1+s3K1(s1, s2)]3

�1 ( p� )
�s1 & t� 1

+_ 1
[1+s3K2(s1, s2)]2

�21 ( p� )
�s3s2 &2

K2(s1, s2)
[1+s3K2(s1, s2)]3

�1 ( p� )
�s1 & t� 2

+
�21 ( p� )
�(s3)2 n�

Also

�21 ( p� )
�s3s1 =

�
�s1 \�1 ( p� )

�s3 +=
� |!9 |
�s1 =&:1K1 (119)

and so

�!9 (s1, s2, s3)
�s3 } s3=0

=&:1K1(s1, s2) t� 1&:2K2(s1, s2) t� 2+
�21 ( p� )
�(s3)2 } s3=0

n�

(120)

1276 Wheeler



Hence, expressed in matrix form in this coordinate system, the components
of {!9 | s3=0 are

({!9 | s3=0) i
j=\

|!9 (s1, s2, 0)| K1 0 &:1 K1

+ (121)
0 |!9 (s1, s2, 0)| K2 &:2K2

&:1K1 &:2K2(s1, s2)
�21 ( p� )
�(s3)2 }s3=0

Also in this coordinate system !9 �!9 expressed in matrix form is

0 0 0

(!9 (s1, s2, 0)�!9 (s1, s2, 0)) i
j=\0 0 0 + (122)

0 0 |!9 |2

Hence, at p� 0 , a in this coordinate system has the form

(!9 �!9 +1 ( p� ) {!9 ) i
j=\

1 |!| K1 0 &1:1K1

+ (123)
0 1 |!9 | K2 &1:2K2

&1:1K1 &1:2K2 |!9 |2+1
�21

�(s3)2

where all quantities are evaluated at p� 0 , i.e., s1=s2=s3=0.
Hence in a coordinate system which has basis vectors locally parallel

to the normal and appropriate tangent vectors of the 1�1-plot the differen-
tial operator of the phase-field equation has the form

1 ({,) K1 _ |!9 |
�2,

�(x1� )2
&2:1

�2,

�x1� x3� &+1 ({,) K2 _ |!9 |
�2,

�(x2� )2
&2:2

�2,

�x2� x3� &
+_ �

�s3 \1 ( p� )
�1 ( p� )

�s3 +& �2,

�(x3� )2
(124)
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